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SUMMARY

The oscillatory �ow of a viscoelastic �uid in a circular pipe under the in�uence of a transversal
magnetic �eld is studied. Exact solutions for the axial velocity and �ow rate are presented. The velocity
enhancement and the resonance behaviour are analysed both numerically and asymptotically in the case
of small pipe radii.
Approximations for the resonance frequencies and the achievable velocity enhancements are derived.

Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: viscoelastic MHD �ow; resonance; velocity enhancement

1. INTRODUCTION

Non-Newtonian �uids, among them viscoelastic �uids (e.g. oil, liquid polymers, rubber,
colloidal suspension or blood) exhibit some remarkable phenomena due to their ‘elastic’ na-
ture, see Reference [1] and references therein. Resonance phenomena of viscoelastic �uids
appear in polymer processing, the so-called draw resonance, see References [2–7]. In Refer-
ences [8–10] pulsating viscoelastic �ows and their resonance behaviour have been studied.
Since most �uids are electrically conducting or in technological applications exposed to

magnetic �elds, very often MHD e�ects cannot be neglected [10–14].
In the present work, we consider the unsteady �ow of a viscoelastic �uid in a circular

pipe [15]. It is assumed that a magnetic �eld perpendicular to the axis of the pipe is present,
no external electric �eld is imposed and that the magnetic Reynolds number is small, such
that induced magnetic �elds can be neglected [11, 16]. Here we mention that in the presence
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of electric and magnetic �eld one will have very general constitutive equations for the stress,
free energy, etc. (see References [17, 18]) and this general constitutive equation for the stress
is very complicated giving rise to highly nonlinear equations, which are not easy to solve.
Actually, we are going to look at simpli�ed MHD equations, which are similar to that in the
case of classical MHD equations [19–21].
The purpose of our work is the mathematical and numerical study of these phenomena

in order to obtain expressions for the axial velocity, velocity enhancement, �ow rate and to
analyse the resonance behaviour in the limit of small pipe radii.
The paper is organized as follows. In Section 2 we shortly recall the equations of

magnetohydrodynamics and the constitutive relation of the upper convected Maxwell model.
In Section 3 we solve the equation of motion for a viscoelastic MHD Poiseuille �ow and in-
troduce the velocity enhancement and �ow rate. Section 4 deals with the resonance behaviour
and its asymptotic analysis in case of small radii.

2. MHD EQUATIONS AND CONSTITUTIVE EQUATIONS OF VISCOELASTICITY

The unsteady �ow of an incompressible �uid in the presence of a magnetic �eld is governed
by equations of conservation of mass and momentum. These equations are

∇ ·V=0 (1)

�
dV
dt
= divT+ J×B (2)

in which V is the velocity vector, � is the density, d=dt is the material time derivative, T is
the stress tensor, J is the electric current density, and B is the total magnetic �eld B=B0+b,
where b is the induced magnetic �eld and B0 denotes the imposed magnetic �eld. In the
absence of displacement currents, the Maxwell’s equations [11, 16] and modi�ed Ohm’s
law [22] can be written as

∇ ·B=0; ∇ ×B=�mJ; ∇ ×E=−@B
@t

J= �[E+V×B]
(3)

where E is the electric �eld, �m is the magnetic permeability, and � is the electric �eld
conductivity.
The following assumptions are made in order to precede our discussion:

1. The density �, magnetic permeability �m and electric �eld conductivity �, are considered
constant throughout the �ow �eld region.

2. Electric �eld conductivity � is assumed �nite.
3. Total magnetic �eld B is perpendicular to the velocity �eld V and the induced magnetic
�eld b is negligible compared with the applied magnetic �eld B0 so that the magnetic
Reynolds number is small [11, 16].

4. We assume a situation where no energy is added or extracted from the �uid by the
electric �eld, which implies that there is no electric �eld present in the �uid �ow region.
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Figure 1. Sketch of the considered geometry.

Under these assumptions the electro-magnetic body force J×B becomes [11, 16]
J×B=−�B20V (4)

For the stress tensor T of a viscoelastic �uid we use an upper convected Maxwell model
with a discrete spectrum of relaxation times [1]. Considering a unidirectional Poiseuille �ow
in a cylindrical pipe, see Figure 1, and using cylindrical coordinates (r; ’; z), we obtain the
following constitutive equation:

�(r; t) =
K∑
k=1
�k(r; t)(

1 + �k
@
@t

)
�k(r; t) = �k

@
@r
v(r; t)

(5)

where � is the rz component of the extra stress tensor and v is the axial velocity. By K; �k
and �k ; k=1; 2; : : : ; K we denote the number of relaxation times in the spectrum, the kth
relaxation time and partial viscosity, respectively. For K =2 and �2 = 0, one obtains the
Oldroyd-B model and for K =1 and �1 = 0, the equations describe a Newtonian �uid.

3. VISCOELASTIC MHD POISEUILLE FLOW

Consider a unidirectional Poiseuille �ow in the presence of a transversal magnetic �eld, see
Figure 1. In cylindrical coordinates, the equation of motion reads as

�
@
@t
v(r; t)=−@p(t)

@z
+
1
r
@(r�)
@r

− �B20v (6)

where p is the scalar pressure. The boundary conditions for the velocity are

v(r=R; t)=0

v is �nite when r→ 0
(7)

where R is the radius of the pipe.
Let the pressure gradient oscillate with frequency ! and amplitude p1, i.e.

@p(t)
@z

=p1ei!t (8)
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A stationary oscillating solution of Equations (5) and (6) is sought in the form

v(r; t)= u!(r)ei!t (9)

Using Equations (8) and (9) into Equations (5) and (6) we obtain the equation satis�ed
by u! as follows

r2u′′
! + ru

′
! + (�r)

2u!=
−p1(�r)2
�(n+ i!)

(10)

where prime denotes the di�erentiation with respect to r and n=�B20=�.
The solution of Equation (10) satisfying conditions (7) gives the axial velocity as follows:

u!(r)=− p1
�(n+ i!)

[
1− J0(r�)

J0(R�)

]
(11)

where

�=

[
−(n+ i!)

(
K∑
k=1

�k
1 + i!�k

)−1]1=2
; �k =

�k
�

and Jk is the kth order Bessel function [23].
In the case of constant pressure gradient, i.e. !=0, we obtain

u0(r)=− p1
��2

[
1− I0(r�)

I0(R�)

]
(12)

where

�=
K∑
k=1
�k ; �2 =

�B20
�
=
n�
�

and Ik is the kth order modi�ed Bessel function [23]. The parameter � is also known as the
Hartmann number [16].

3.1. Flow rate

The �ow rate and the average �ow rate are de�ned by

Q(t) = 2	
∫ R

0
v(r; t)r dr (13)

Q̃= lim
T→∞

1
T

∫ T

0
Q(t) dt (14)

For a constant pressure p0, Equations (11) and (12) in (14) lead to the �ow rate

Q̃�=
2	Rp0
��3

(
I1(R�)
I0(R�)

− �R
2

)
(15)

Note that an oscillating pressure gradient leads to a zero mean �ow rate.
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Comparing the average �ow rate Q̃� to the �ow rate Q̃0 in the absence of a magnetic �eld,
we obtain the ratio

B=
Q̃�
Q̃0
=
16
R3�3

(
�R
2

− I1(R�)
I0(R�)

)
=1− R2�2

6
+O(R4�4) (16)

Clearly, the presence of a magnetic �eld diminishes the �ow rate, see Figure 2.

3.2. Velocity enhancement

We introduce the coe�cient A of the velocity enhancement as the ratio of the amplitude of the
velocity oscillations on the tube axis and the velocity when the pressure gradient is constant
and equal to p1, that is

A(!)=
∣∣∣∣ amplitude of velocity oscillation on the axis
velocity on the axis for constant pressure gradient

∣∣∣∣ =
∣∣∣∣u!(0)u0(0)

∣∣∣∣ (17)

Inserting Equations (11) and (12) we obtain

A(!)=
��2

�|n+ i!|
|1− J0(R�)−1|
|1− I0(R�)−1|

Let us consider the case of a single relaxation time, i.e. K =1. It is useful to introduce the
dimensionless parameters

R̃=
R√
��
; !̃=!�; �=

�
�
; �̃= �

√
��
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Figure 2. Decrease of the �ow rate in the presence of a magnetic �eld. Shown are the ratio B (‘ ’)
according to (16) and its asymptotic approximation (‘- - - -’) vs R�.
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We see that A(!) depends solely on the parameters R̃ and �̃. Skipping the tildes we obtain

AR;�(!)=
1√

1 +!2=�4
|1− J0(R�)−1|
|1− I0(R�)−1| (18)

where

�=
√
!2 − �2 − i!(1 + �2)

In the case of a vanishing magnetic �eld (�=0), the velocity enhancement is determined by

AR;0(!)=
|1− J0(R

√
!2 − i!)−1|
!

lim
�→0

�2|I0(R�)|
|I0(R�)− 1| =

4|1− J0(R
√
!2 − i!)−1|

R2!
(19)

To discuss the in�uence of the viscoelasticity on the velocity enhancement, the above scaling
is not adequate, since it does not permit to consider the case �=0, i.e. pure viscous behaviour.
Therefore we propose a di�erent set of dimensionless parameters

R̃=R
√
n
�
; !̃=

!
n
; 
= n� (20)

Using these parameters and skipping the tilde, the velocity enhancement reads as

AR;
(!)=
1√

1 +!2
|1− J0(R

√

!2 − 1− i!(1 + 
))−1|
|1− I0(R)−1| (21)

This form now easily allows one to consider the viscous case �=0, i.e. 
=0. Figure 3 shows
the graph of AR;
(!) for R=0:25 and 
∈ {0:2; 0:15; 0:10}. Note that for 
→ 0 (pure viscous
behaviour), the resonance structure of the velocity enhancement disappears.
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Figure 3. Velocity enhancement A(!) vs frequency !. Shown are the graphs for R=0:25 and 
=0:2
(‘ ’), 
=0:15 (‘ ’), 
=0:1 (‘– ·’) and 
=0 (‘: : :’).
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4. RESONANCE BEHAVIOUR

The velocity enhancement is given by Equation (18). In Reference [9] the resonance behaviour
of A in the absence of a magnetic �eld �=0 has been studied. In this section we analyse
the resonance if a magnetic �eld is present. Figure 4 shows the graph of AR;� for R=0:3 and
�∈ {0; 1; 1:5; 2:5}. The di�erent maxima of A are clearly visible. We also observe that for �
increasing, every second maximum disappears. For a given value of R we will consider the
question, for which value of � the second maximum disappears.
In case of small pipe diameters R�1 we are interested in an asymptotic analysis of the

position and the height of the maxima !̂ and the minima �! in dependence of the MHD-
parameter �. We assume that R�1 and �=O(1) and introduce the new frequency x=R!.
Finding x such that A is maximal is equivalent to maximizing

h(x)=
1

x2 + R2�4

(
1− 1

J0(R�)

)
× conjugate

(
1− 1

J0(R�)

)
(22)

Plugging the ansatz x= x0 + Rx1 + · · · into the condition dh=dx=0 we obtain in zeroth order
equation

−2�2x(J0(x)− 1)J0(x)(J0(x)2 − J0(x) + xJ1(x))=0
with the solutions

x=0; x= jk and x= &k

where jk is the kth positive zero of J0; j1 = 2:4048, j2 = 5:5201 and &k is the kth zero of
J0(x)2 − J0(x) + xJ1(x), &1 = 4:1648, &2 = 7:1145. The solutions jk correspond to the maxima
of A whereas the minima are located at &k .

5 10 15 20 25 30 35 40 45
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Figure 4. Velocity enhancement A(!) vs frequency !. Shown are the graphs for R=0:3 and �=0
(‘– ·’), �=1 (‘ ’), �=1:5 (‘ ’) and �=2:5 (‘: : :’).
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Computing the higher order terms we obtain

x̂k = jk +
J1( jk)jk(�2 + 1)2 − (�4 + 1)

4jk
R2 + · · · (23)

!̂k =
jk
R
+
J1( jk)jk(�2 + 1)2 − (�4 + 1)

4jk
R+ · · · (24)

!̂1 =
2:405
R

+ (0:02579(�4 + 1) + 0:2579�2)R+ · · · (25)

AR;�(!̂k) =
8

|J1( jk)|jk(�2 + 1) +O(1) (26)

AR;�(!̂1) =
6:406
�2 + 1

R−2 +
0:6026(�4 + 1) + 0:6516�2

�2 + 1
+ · · · (27)

for the maxima and

�x1 = &1 + (0:03783�4 + 0:2125�2 + 0:05459)R2 + · · · (28)

AR;�( �!1) =
3:48
R

− (0:2774�4 + 0:5407�2 + 0:2633)R+ · · · (29)

for the �rst minimum.
In the case �=0 (no magnetic �eld), the above results reduce to the formulas given in

Reference [9].
Figures 5 and 6 show the relative errors of the asymptotic expansion for the frequency !̂1

and, respectively, the height AR;�(!̂1) of the �rst maximum for di�erent values of �. The
irregular behaviour of the graphs of !̂1 for small values of R are caused by the numerical
maximization routine since the maximum is localized up to a tolerance of 10−6.
To discuss the question for which value �0 of the MHD-parameter the second

maximum !̂2 disappears, we consider the case R=0:3. Figure 7 shows the frequencies of
the �rst and second maximum and the minimum separating them for values � ranging be-
tween 0.5 and 3. For �= �0∼2:22 the minimum �!1 and the second maximum !̂2 approach
each other and disappear for larger values of �.
To compute an approximate value for �0, we have di�erent alternatives. First, setting the

asymptotic expansion (23) for the frequency of the second maximum equal to expansion (28)
for the frequency of the minimum yields

�0; !=
1:684√
R

− 0:337
√
R+ · · · (30)

Second, we can set the expansion for the height of the maximum equal to the expansion for
the height of the minimum and obtain the alternative approximation

�0; A=
1:106√
R

− 0:452
√
R+ · · · (31)
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Figure 5. Relative error of the asymptotic expansion for the frequency of the �rst maximum.
The di�erent graphs corresponding to �=0:5 (‘ ’), �=1 (‘ ’), �=1:5 (‘– ·’).
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Figure 6. Relative error of the asymptotic expansion for the height of the �rst maximum. The di�erent
graphs corresponding to �=0:5 (‘ ’), �=1 (‘ ’), �=1:5 (‘– ·’).

A direct computation of �0 based on (22) seems to be intractable due to the high alge-
braic complexity. Figure 8 provides a comparison of Equations (30) and (31) with numerical
simulations. All three graphs show clearly the O(R−1=2)-behaviour of �0.
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Figure 7. Frequencies of the �rst maximum !̂1 (‘ ’), the second maximum !̂2 (‘ ’),
and the minimum �!1 (‘– ·’) separating them vs �. The dotted lines represent the asymptotic

expansions for the respective quantities.
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Figure 8. Critical MHD-parameter �0 vs R. Shown are results from numerical simulations (‘ ’) and
the approximations (30) (‘ ’) and (31) (‘– ·’).

5. CONCLUSIONS

We have considered the oscillatory �ow of a viscoelastic �uid in a circular pipe under the
in�uence of a transversal magnetic �eld. Comparing the exact solutions for the axial velocity
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to the velocity of a nonoscillatory �ow shows a very pronounced resonance behaviour. In the
case of small pipe radii, the resonance frequencies and the achievable velocity enhancements
have been studied using asymptotic analysis. A remarkable phenomenon is that for increasing
MHD-parameter, the resonance behaviour changes and certain maxima disappear. The limiting
frequency, for which this occurs has been both approximately estimated and numerically
computed. A precise prediction of the critical value for the MHD-parameter is still lacking
and will be subject of further research.
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